Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Biol. Res ; 27(3/4): 177-92, 1994. ilus, graf
Article in English | LILACS | ID: lil-228577

ABSTRACT

The relation between the expression of the oxyntic cell phenotype and the modifications of the extracellular matrix during development of the gastric glands, was studied in 10 to 21 day-old chick embryos. Cytodifferentiation of the oxyntic cells was established by ultrastructural methods, while the expression of pepsinogen, mitochondrial enzyme markers and apical secretory membranes was determined by histochemical and biochemical procedures. Results show that the morphogenesis of the glandular lobules occurs between days 8 and 15 of gestation. Later on, the lobules enlarge but maintain their basic morphology. Until day 13, the developing glands consist of primary tubes lined by a stratified columnar epithelium. The apical poles of the cells that contact the lumen show cytoplasmic processes, and Mg-ATPase activity and F-actin are concentrated at the apical cell borders. From day 13 on, the cells of the simple epithelium that lines secondary tubules budding from the primary tube, show all the features that define differentiated oxyntic cells. The synthesis of glycosaminoglycans during glandular morphogenesis was studied measuring the incorporation of radioactive sulfate into developing chick embryo proventriculi. An important increase in isotope incorporation was found between days 13 and 18 of development. Histochemical localization of these macromolecules shows that glycosaminoglycans are closely associated with the developing glandular lobules. Variations in the structure of epithelial cells undergoing morphogenesis and in the composition of the extracellular matrix are synchronous, suggesting that interactions between them may be significant in terms of the establishment and maintenance of the adult gastric gland phenotype


Subject(s)
Animals , Chick Embryo , Extracellular Matrix , Gastric Mucosa/embryology , Parietal Cells, Gastric/cytology , Actins/analysis , Ca(2+) Mg(2+)-ATPase/analysis , Cell Differentiation , Electron Transport Complex IV/analysis , Gastric Mucosa/ultrastructure , Glycosaminoglycans/analysis , Morphogenesis
2.
Biol. Res ; 27(1): 29-38, 1994. ilus
Article in English | LILACS | ID: lil-225967

ABSTRACT

The association of myosin and a filamin-like protein to the F-actin cytoskeleton of parietal cells was studied in the rat gastric mucosa. Myosin and the filamin-like protein were localized by indirect immunofluorescence microscopy while the distribution of actin was established by using FITC-phalloidin. These cytoskeletal proteins, concentrated in the parietal cells, changed their distribution in correlation with the hydrochloric acid (HCl) secretory state of the cells and the appearance of a developed intracellular canaliculus. Thus,in resting parietal cells, actin showed a patchy distribution, delimiting the poorly developed secretory canaliculi, while myosin and the filamin-like protein distributed diffusely over the cytoplasm. In secreting cells, F-actin was concentrated in the cytoplasmic projections filling the canalicular lumen, while myosin and the filamin-like protein were excluded from this region, concentrating in the adjoining cytoplasm. The present results show that myosin and the filamin-like protein change their association with the secretory membranes in relation to the development of the secretory canaliculus of parietal cells. In resting cells, both proteins associate with the endocellular secretory membranes. In secreting cells, the microvillar projections of the canalicular surface formed by these membranes bind F-actin, but exclude myosin and the filamin-like protein


Subject(s)
Animals , Rats , Actins/metabolism , Contractile Proteins/metabolism , Gastric Mucosa/ultrastructure , Microfilament Proteins/metabolism , Myosins/metabolism , Parietal Cells, Gastric/ultrastructure , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Contractile Proteins/ultrastructure , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Fluorescent Antibody Technique , Gastric Acid/metabolism , Gastric Mucosa/ultrastructure , Microfilament Proteins/ultrastructure , Microscopy, Fluorescence , Myosins/ultrastructure , Parietal Cells, Gastric/metabolism , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL